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Abstract. A general method based on the polynomial deformations of the Lie algebra sl(2, R) is
proposed in order to exhibit the quasi-exact solvability of specific Hamiltonians implied by quantum
physical models. This method, using the finite-dimensional representations and differential
realizations of such deformations, is illustrated on the sextic oscillator as well as on second-
harmonic generation.

1. Introduction

In the late 1980s, Turbiner and Ushveridze [1] discovered some cases where a finite number
of eigenvalues (and the associated eigenfunctions) of the spectral problem for the Schrödinger
operator

H̄ψ = Eψ H̄ = − d2

dy2
+ V (y) y ∈ R or R+ (1)

can be found explicitly. The corresponding problems have been called quasi-exactly solvable
(QES). Since that first step, QES equations have been classified [2] according to their
relation with the finite-dimensional representations of the Lie algebra sl(2, R). Indeed QES
Schrödinger equations as given in (1) can be written as

Hφ = Eφ H = p4(x)
d2

dx2
+ p3(x)

d

dx
+ p2(x) x ∈ R or R+ (2)

through ad hoc changes of variables and functions [2]

x = x(y) ψ = exp(χ)φ (3)

if pa(x)(a = 2, 3, 4) refer to polynomials of order a in x. The Hamiltonian H in (2) can also
be expressed in terms of the first-order differential operators

j+ = −x2 d

dx
+ 2jx

j0 = x
d

dx
− j

j− = d

dx
j = 0, 1

2 , 1, . . .

(4)
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satisfying the sl(2, R) commutation relations, i.e.

[j0, j±] = ±j± (5)

[j+, j−] = 2j0 (6)

the Casimir operator of this structure being C = j+j− + j 2
0 − j0. The operator H is then

H =
∑

µ,ν=±,0,µ�ν

cµνjµjν +
∑

µ=±,0

cµjµ

= [c++x4 − c+0x3 + (c00 − c+−)x2 + c0−x + c−−]
d2

dx2

+[2(1 − 2j)c++x3 + ((3j − 1)c+0 − c+)x2 + (2jc+− + (1 − 2j)c0− + c0)x

−jc0− + c−]
d

dx
+ 2j (2j − 1)c++x2 − (2j 2c+0 − 2jc+)x + j 2c00 − jc0 (7)

where the coefficients cµν, cµ are arbitrary real numbers.
The crucial point in order to relate the operator (7) to QES problems is the introduction of

the non-negative integer 2j in (4). Indeed, the generators of sl(2, R) as written in (4) preserve
the space of polynomials of order 2j

P (2j) = {1, x, x2, . . . , x2j } (8)

and so does the Hamiltonian (7). Searching for the eigenvalues of (1) is thus limited to the
diagonalization of (7) in the (2j +1)-dimensional space P(2j). It is a straightforward problem
leading to the knowledge of the eigenvalues Ek(k = 0, 1, . . . , 2j) as well as the corresponding
eigenfunctions ψk (cf (3) where φk belongs to P(2j)) and ensuring the quasi-exact solvability
of the original equation.

We propose in this paper to take a new look at this problem through the consideration of
the so-called polynomial deformations [3] of sl(2, R), i.e. of the structures characterized by
the following commutation relations:

[J0, J±] = ±J± (9)

[J+, J−] = pn(J0) (10)

where pn(J0) stands for a polynomial of order n in the operator J0.
More precisely, in section 2, we show how to introduce in a natural manner the polynomial

deformations (10) inside the operator (7) (n will then be limited to 3). In section 3, we study
the finite-dimensional representations of these polynomial deformations while section 4 is
devoted to their finite-dimensional differential realizations. In section 5, we analyse two
examples, i.e. the sextic oscillator (section 5.1) and the second-harmonic generation (SHG)
problem (section 5.2). Finally, we give some conclusions in section 6.

2. Polynomial deformations of sl(2, R) inside QES problems

Instead of considering the operators (4) as expressed in (7), let us introduce the following
operators (so defined for natural reasons in connection with their respective raising, diagonal
or lowering characteristics):

J+ ≡ c++j 2
+ + c+0j+j0 + c+j+ (11)

J0 ≡ c+−j+j− + c00j 2
0 + c0j0 (12)

J− ≡ c0−j0j− + c−−j 2
− + c−j− (13)

so that H is simply written

H = J+ + J0 + J−. (14)
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As we will see, restoring the linearity inside (7) such that it becomes the combination (14) will
have the consequence of introducing nonlinearity inside (6), so we will be concerned with the
algebra (9), (10). Indeed asking for the relations (9) to be satisfied with the operators (11)–(13)
and the relations (5), (6) leads to either

c++ = c−− = 0 c+− = c00 c0 + c00 = 1 (15)

or
c++ 	= 0 c−− 	= 0 c+0 = c+ = c0− = c− = 0
c+− = c00 c0 + c00 = 1

2 .
(16)

The relation (10) is then ensured with the respective polynomials pn=3(J0)

p3(J0) = 4c+0c0−J 3
0 + 3(c0−c+ + c+0c− − c+0c0−)J 2

0

+[2c+c− − c+0c− − c0−c+ + c+0c0−(1 − 2j (j + 1))]J0

+j (j + 1)(c+0c0− − c+0c− − c0−c+) (17)

when the constraints (15) are considered or

p3(J0) = 8c++c−−((2j 2 + 2j − 1)J0 − 8J 3
0 ) (18)

when the relations (16) are taken into account. Notice that in these expressions c+−(= c00)

has been put equal to zero without losing generality (cf the Casimir operator of sl(2, R)).
Moreover, the relation (18) refers to the Higgs algebra already intensively visited [3].

We can thus consider the QES Hamiltonians as linear combinations of operators generating
the following polynomial deformation of sl(2, R):

[J0, J±] = ±J± (19)

[J+, J−] = αJ 3
0 + βJ 2

0 + γ J0 + δ α, β, γ, δ ∈ R (20)

taking account of the two possibilities (17) and (18). Notice that the Casimir operator of this
deformed algebra is

C = J+J− +
α

4
J 4

0 +

(
β

3
− α

2

)
J 3

0 +

(
α

4
− β

2
+
γ

2

)
J 2

0 +

(
β

6
− γ

2
+ δ

)
J0.

The next step will be the determination of the finite-dimensional representations of the
algebra (19), (20) denoted in the following by sl(3)(2, R), the upper index referring to the
highest power of the diagonal operator.

3. Finite-dimensional representations of sl(3)(2, R)

As stated in the introduction and in relation to the possible diagonalization of H , we are
interested in the finite-dimensional (=2J + 1, J = 0, 1

2 , 1, . . . ,) representations of sl(3)(2, R),
only. We thus consider kets of type |J,M〉 with M running from −J to J and such that

J0|J,M〉 =
(
M

q
+ c

)
|J,M〉 (21)

J+|J,M〉 = f (M)|J,M + q〉 (22)

J−|J,M〉 = g(M)|J,M − q〉 (23)

where q is a positive integer and c a real number. The relations (21)–(23) are such that (19) is
satisfied. In order to ensure (20), we have to impose

f (M − q)g(M) − f (M)g(M + q) = α

(
M

q
+ c

)3

+ β

(
M

q
+ c

)2

+γ

(
M

q
+ c

)
+ δ M = −J, . . . , J. (24)
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Table 1.

l = 0 l = 1 l = 2 · · · l = q − 1

J = (qn)/2 d = 0 d = q − 1 d = q − 2 · · · d = 1
J = (qn + 1)/2 d = 1 d = 0 d = q − 1 · · · d = 2
J = (qn + 2)/2 d = 2 d = 1 d = 0 · · · d = 3
· · · · · · · · · · · · · · · · · ·
J = (qn + q − 1)/2 d = q − 1 d = q − 2 d = q − 3 · · · d = 0

Moreover, we have to take account of the dimension of the representations, leading to the
constraints

f (J ) = f (J − 1) = · · · = f (J − q + 1) = 0 (25)

and

g(−J ) = g(−J + 1) = · · · = g(−J + q − 1) = 0. (26)

We then ensure preservation of the (2J + 1)-dimensional space {|J,M〉,M = −J, . . . ,+J }.
We now turn to the determination of the remaining f (M), g(M) in (22) and (23) i.e.

f (J − q), . . . , f (−J ) and g(q − J ), . . . , g(J ). Being interested in the highest-weight
representations, we obtain from (24) and (25) the following result:

f (J − (k + 1)q − l)g(J − kq − l) = (k + 1)

{
α

(
J − l

q
+ c

)3

+ β

(
J − l

q
+ c

)2

+γ

(
J − l

q
+ c

)
+ δ − 1

2

[
3α

(
J − l

q
+ c

)2

+ 2β

(
J − l

q
+ c

)
+ γ

]
k

+
1

6

[
3α

(
J − l

q
+ c

)
+ β

]
k(2k + 1) − α

4
k2(k + 1)

}
(27)

where l = 0, 1, . . . , q − 1 and k = 0, 1, . . . , 2J−d−l
q

. The non-negative integer d introduced
in the last formula has to take specific values according to l but also to J . These values are
summarized in table 1, n denoting a non-negative integer.

Taking care of these values, we also have to constrain the real c in (21) and (27) through
the conditions (26). This leads to setting equal to zero the expression inside the brackets {·}
in (27) for k = 2J−d−l

q
or, in other words, to considering the q equations on c

α

[
c3 +

3

2q
(d − l)c2 +

1

q2
(J 2 − J (d + l) + l2 − dl + d2)c +

1

2q
(2J − d − l)c

+
1

4q3
(2J 2(d − l) − 2J (d2 − l2) + d3 − d2l + dl2 − l3)

+
1

4q2
(l2 − d2 + 2J (d − l))

]
+ β

[
c2 +

1

q
(d − l)c +

1

3q2
(J 2 − J (d + l)

+d2 − dl + l2) +
1

6q
(2J − d − l)

]

+γ

(
c +

1

2q
(d − l)

)
+ δ = 0 l = 0, 1, . . . , q − 1. (28)

Excluding the trivial case (α, β, γ, δ) = (0, 0, 0, 0), we notice that these equations reduce to

αc(c2 + J (J + 1)) + β(c2 + 1
3J (J + 1)) + γ c + δ = 0 (29)
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for q = 1, while for q = 2 we are led to either

α = 0 → β = 0 c = − δ

γ
(30)

or

α 	= 0 → δ = βγ

3α
− 2β3

27α2
c = − β

3α
(31)

if J = n and to

α(3c2 + 1
4J (J + 1) − 1

8 ) + 2βc + γ = 0 (32)

α(c3 + 1
4J (J + 1)c) + β(c2 + 1

12J (J + 1)) + γ c + δ = 0 (33)

if J = n + 1
2 . Two other values of q are also available, namely q = 3 and 4. We respectively

obtain

α 	= 0 γ = β2

3α
− 1

9
αJ 2 +

2

9
α δ = βγ

3α
− 2β3

27α2
c = − β

3α
(34)

if J = 3n
2 ,

α 	= 0 γ = β2

3α
− 1

9
αJ 2 − 2

9
αJ +

1

9
α δ = βγ

3α
− 2β3

27α2
c = − β

3α
(35)

if J = 3n+1
2 , and

α 	= 0 γ = β2

3α
− 1

9
αJ 2 − 1

9
αJ +

1

9
α δ = βγ

3α
− 2β3

27α2
c = − β

3α
(36)

if J = 3n+2
2 , these three contexts being associated with q = 3. We also have

α 	= 0 γ = β2

3α
− 1

16
αJ 2 +

3

16
α δ = βγ

3α
− 2β3

27α2
c = − β

3α
(37)

if J = 2n, and

α 	= 0 γ = β2

3α
− 1

16
αJ 2 − 1

8
αJ +

1

8
α δ = βγ

3α
− 2β3

27α2
c = − β

3α
(38)

if J = 2n+ 1, these two cases being related to q = 4. The two other systems related to q = 4,
i.e. those corresponding to J = 2n + 1

2 and 2n + 3
2 , are incompatible ones as are those related

to q > 4.
Let us also notice that some of these representations are reducible. For instance, if we

consider the case of the usual sl(2, R) algebra, corresponding to α = 0, β = 0, γ = 2, δ = 0,
we obtain

q = 1 → c = 0 (39)

and

q = 2 → c = 0 J = n. (40)

The first case (39) is associated with (see (27))

f (J − k − 1)g(J − k) = (k + 1){2J − k} k = 0, 1, . . . , 2J (41)

or, in other words, with

f (M − 1)g(M) = (J − M + 1)(J + M) M = −J, . . . , J. (42)
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We recognize in (42) the well known result of the angular momentum theory [4] subtended by
this sl(2, R) algebra. The second case (40) corresponds to

f (J − 2k − 2)g(J − 2k) = (k + 1){J − k} k = 0, 1, . . . , J (43)

f (J − 2k − 3)g(J − 2k − 1) = (k + 1){J − k − 1} k = 0, 1, . . . , J − 1 (44)

or, in other words, to

f (M − 2)g(M) = 1
4 (J − M + 2)(J + M) M = −J,−J + 2, . . . , J (45)

f (M − 2)g(M) = 1
4 (J − M + 1)(J + M − 1) M = −J + 1,−J + 3, . . . , J − 1. (46)

It is then clear that the representation (J = n, q = 2) is in fact the direct sum of the two
(irreducible) representations (J = n−1

2 , q = 1) and (J = n
2 , q = 1) (the eigenvalues of the

Casimir being equal).

4. Finite-dimensional differential realizations of sl(3)(2, R)

We now turn to the construction of the differential realizations (expressed in terms of the real
variable x) of the algebra (19), (20). In correspondence with (21)–(23), the generators of
sl(3)(2, R) have the following forms:

J+ ≡ xqF (D) (47)

J0 ≡ 1

q
(D − J ) + c (48)

J− ≡ G(D)
dq

dxq
(49)

and the basis {|J,M〉,M = −J, . . . , J } stands for the space of monomials {xJ+M,M =
−J, . . . , J }, i.e. (cf (8)) P(2J ). Moreover, D is the dilation operator

D ≡ x
d

dx
. (50)

By remembering that

dq

dxq
xq =

q∏
k=1

(D + k) ≡ (D + q)!

D!
(51)

and

xq
dq

dxq
=

q−1∏
k=0

(D − k) ≡ D!

(D − q)!
(52)

the relation (20) gives

F(D − q)G(D − q)
D!

(D − q)!
− F(D)G(D)

(D + q)!

D!

= α

[
1

q
(D − J ) + c

]3

+ β

[
1

q
(D − J ) + c

]2

+ γ

[
1

q
(D − J ) + c

]
+ δ. (53)

Let us discuss this condition within the (α 	= 0)-case first and the (α = 0)-case second.
(a) In order to avoid singularities, we thus impose, when α 	= 0,

F(D)G(D) = − α

4q4

D!

(D + q)!
(D + λ1)(D + λ2)(D + λ3)(D + λ4) (54)
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and obtain the following system on the real unknowns λ1, . . . , λ4:

λ1 + λ2 + λ3 + λ4 = 4qc + 2q − 4J +
4

3

β

α
q (55)

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = 6q2c2 + 6q2c − 12qJc + 4
β

α
q2c + 6J 2

−6qJ − 4
β

α
qJ + q2 + 2

β

α
q2 + 2

γ

α
q2 (56)

λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 = 4q3c3 − 12q2Jc2 + 6q3c2 + 4
β

α
q3c2 + 12qJ 2c

−12q2Jc + 2q3c − 8
β

α
q2Jc + 4

β

α
q3c + 4

γ

α
q3c − 4J 3 + 6qJ 2 − 2q2J

−4
β

α
q2J +

2

3

β

α
q3 − 4

γ

α
q2J + 2

γ

α
q3 + 4

δ

α
q3. (57)

Let us recall that we are interested in finite-dimensional (=2J + 1) realizations only. This
means that the cases q = 1 and 2 are the only possibilities in accordance with

q = 1 → λ1 = 1 λ2 = −2J (58)

and

q = 2 → λ1 = 1 λ2 = 2 λ3 = −2J λ4 = −2J + 1. (59)

In the first context (q = 1), the equations (55) and (56) fix λ3 and λ4 as follows:

λ3 = 2c +
1

2
− J +

2

3

β

α
+
ε

2
λ4 = 2c +

1

2
− J +

2

3

β

α
− ε

2
(60)

with

ε2 = 1 +
16

9

β2

α2
− 4J (J + 1) − 8c2 − 16

3

β

α
c − 8

γ

α
(61)

while the equation (57) coincides with (29). In the second context (q = 2), we are led to (31)
supplemented by

γ = β2

3α
− α

4
J 2 − α

4
J +

α

8
. (62)

(b) The case α = 0 is simpler and has already been analysed [5]. For self-consistency, we
recall the main results, i.e.

F(D)G(D) = − β

3q3

D!

(D + q)!
(D + λ1)(D + λ2)(D + λ3) (63)

where the only possible finite-dimensional (=2J + 1) realization is associated with q = 1 and
corresponds to

λ1 = 1 λ2 = −2J λ3 = −J + 3c +
3γ

2β
+

1

2
(64)

the real c being fixed through

βc2 + γ c + δ +
β

3
J (J + 1) = 0. (65)

Now that both cases have been considered, let us conclude this section by noticing that
some realizations (namely the ones corresponding to q = 2 without the condition (62) and the
ones associated with q = 3, 4) are missing with respect to the representations developed in
the previous section. Indeed, the relation (53) we have imposed is more constraining because
it is a relation between operators independent of the basis on which they are supposed to act.
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If we take account of this basis, i.e. in this case P(2J ) = {xJ+M,M = −J, . . . , J }, we can
recover all the cases previously discussed. For example, in the context q = 3, J = 3

2 , we can
consider

J+ = − 1
6f (− 3

2 )x
3(D − 1)(D − 2)(D − 3) (66)

J0 = 1

3
D − 1

2
− β

3α
(67)

J− = 1

6
g

(
3

2

)
d3

dx3
(68)

with

f

(
−3

2

)
g

(
3

2

)
= α

9
. (69)

It is then easy to convince ourselves that these operators generate sl(3)(2, R) with γ = β2

3α − α
36

and δ = β3

27α2 − β

108 but on the space P(3) only (the relation (53) being trivially not satisfied
except on this space). However it has to be stressed that the relations corresponding to (66)–(68)
but in the general context become really heavy when the value of J increases.

5. Two examples

We first consider the prototype of QES systems, i.e. the so-called sextic oscillator [1, 2], and
then turn to a more physical example: the SHG problem.

5.1. The sextic oscillator

This system is characterized by the following potential:

V (y) = a2y6 + 2aby4 + (b2 − 2ap − 8aj − 3a)y2 (70)

with a(	= 0), b ∈ R and p = 0, 1 while j is the quantum number appearing in (4). With

x = y2 (71)

and

χ = −
∫ (

a

2
x +

b

2
− p

2x

)
dx (72)

we can be convinced of its QES character via the form (7) (up to a translation)

H = J+ + J0 + J− + 2bp + 4bj + b (73)

and

c0− = −4 c+ = −4a c0 = 4b c− = −(4j + 2 + 4p) (74)

the other cs being equal to zero. Without loss of generality, we can put b = 1
4 (in order to

recover (19)) and obtain, through (11)–(13), the relation (20) with

α = 0 β = 48a γ = 32a(p + j) δ = −16aj (j + 1). (75)

The case q = 1 is thus the only one to be available. We actually have

J0|J,M〉 = (M + c)|J,M〉 (76)

J+|J,M〉 = f (M)|J,M + 1〉 (77)

J−|J,M〉 = g(M)|J,M − 1〉 (78)
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with

f (M − 1)g(M) = (J − M + 1)(J + M)(48ac + 16aM + 16ap + 16aj − 8a). (79)

Moreover, the parameter c is fixed according to

c = − 1
3 (p + j) ± 1

3

√
(p + j)2 − 3J (J + 1) + 3j (j + 1) (80)

leading to constraint of J through

J � − 1
2 + 1

6

√
36j (j + 1) + 12(p + j)2 + 9 (81)

in order to ensure the reality of c. Because the space P(2J ) is preserved, we just have to set
to zero the determinant of the following matrix:

M =
2J+1∑
k=1

(
E + J − k − c − p

2
− j +

3

4

)
ek,k

−
2J∑
k=1

g(−J + k)ek,k+1 −
2J∑
k=1

f (−J + k − 1)ek+1,k (82)

in order to find the energies. In the matrix (82), the notation ek,l stands for a (2J + 1)-
dimensional matrix where unity is at the intersection of the kth row and the lth column, the
other elements being zero. For example, when j = 1

2 , we have

J = 0, 1
2 (83)

according to (81) while the relation (80) gives

c = −p

3
− 1

6
± 1

3

√(
p +

1

2

)2

+
9

4
(84)

if J = 0 and

c = 0 or c = − 1
3 (2p + 1) (85)

if J = 1
2 . In the case (84) the energies are

E = c +
p

2
+

3

4
→ E = 0.042 8932, 0.056 2872, 1.110 3796, 1.457 1067 (86)

and in the case (85) the resolution of the vanishing determinant associated with (82) leads to

E = 3
4 ± 1

2

√
1 + 32a E = 5

4 ± 1
2

√
1 + 96a (87)

if c = 0 and

E = 5
12 ± 1

2

√
1 − 32a E = 1

4 ± 1
2

√
1 − 96a (88)

if c = − 1
3 ; c = −1. Only the values given in (87) correspond to the previously obtained

ones [2]. This is indeed a general result that the known [2] energies are recovered through our
approach when c = 0, J = j . The other contexts (J < j ) or (J = j, c = − 2

3 (p + j)) lead to
new values of the energy.

Let us analyse more deeply this result by going to the differential realization (47)–(49),
i.e.

J+ = xF(D) (89)

J0 = D − J + c (90)

J− = G(D)
d

dx
(91)
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where (cf (63) and (64))

F(D)G(D) = −16a(D − 2J )(D − J + 3c + 1
2 + p + j). (92)

In order to preserve the space P(2J ), let us make the choice (without loss of generality, this
freedom being due to the fact that sl(3)(2, R) is defined up to an automorphism [5])

G(D) = −4(D − J + 3c + 1
2 + p + j). (93)

In that case, the Hamiltonian (73) is realized as

H = −4x
d2

dx2
+

[
4ax2 + x − 4

(
−J + 3c +

1

2
+ p + j

)]
d

dx

−8aJx +
p

2
+

1

4
+ j − J + c. (94)

This form is analogous to (2) and we propose to write it in the Schrödinger form (1) through
the changes (3), i.e.

x = y2 (95)

ψ = exp

( ∫ (
1

8
− 2ax +

1

2
(J − 3c − p − j)

1

x

)
dx

)
φ. (96)

The potential obtained in this manner is given by

V (y) = a2y6 + 1
2ay

4 + ( 1
16 − 6aJ − 2aj − 6ac − 2ap − 3a)y2

+
1

2
(j − J − c) + (J − 3c − p − j)(J − 3c − p − j + 1)

1

y2
. (97)

Compared with (70), this expression actually reduces to the sextic oscillator potential iff
c = 0 and J = j . For other values of the parameters (i.e. the already cited (J < j) and
(J = j, c = − 2

3 (p + j)), the new eigenvalues of the problem (appearing for j = 1
2 in (86)

and (88)) do correspond to another model, namely the radial sextic oscillator as shown by (97).

5.2. The SHG

This nonlinear optical process as well as others such as coherent spontaneous emission and
down-conversion [6] can be described by the following effective Hamiltonian:

H = a
†
1a1 + 2a†

2a2 + g(a
†
2a

2
1 + (a

†
1)

2a2) (98)

with cubic terms in the (independent) bosonic creation and annihilation operators. The
Hamiltonian (98) has already been recognized [7] as a QES model. We confirm such a result
by using the technique developed in section 2. Indeed, following section 2, we propose to
define

J+ = a
†
2a

2
1 (99)

J0 = 1
3 (a

†
2a2 − a

†
1a1) (100)

J− = (a
†
1)

2a2 (101)

such that the algebra (19), (20) is satisfied with

α = 0 β = −12 γ = 0 δ = 1
3N

2 + N. (102)

In the last expression, N is the invariant

N = a
†
1a1 + 2a†

2a2 (103)



Quasi-exactly soluable equations and sl(2, R) 7119

satisfying

[N, J0] = [N, J±] = 0. (104)

Once again, the values (102) are typical of the q = 1-representation only, so the relations (76)–
(78) are the ones to be taken care of but with

f (M − 1)g(M) = (J − M + 1)(J + M)(−12c − 4M + 2). (105)

The parameter c is fixed according to

c2 = − 1
3J (J + 1) + 1

36N
2 + 1

12N (106)

and its reality is ensured if

J � − 1
2 + 1

2

√
1
3N

2 + N + 1. (107)

It is then possible to determine the energies by setting to zero the determinant of a (2J + 1)
by (2J + 1) matrix analogous to (82) as well as being possible to determine them through the
differential realization (89)–(91). In this case, we have

F(D)G(D) = 4(D − 2J )(D − J + 3c + 1
2 ) (108)

and choosing

G(D) = 1 (109)

the Hamiltonian (98) becomes

H = N + 4gx3 d2

dx2
+ g

(
1 + 12

(
−J + c +

1

2

)
x2

)
d

dx
+ 4g(−J + 2J 2 − 6Jc)x. (110)

With the respective changes of variables and wavefunctions

x = − 1

gy2
ψ = exp

(
−

∫ (
1

8x3
+

3

2
(c − J )

1

x

)
dx

)
φ (111)

we can put (110) in the Schrödinger-like form (1) with

V (y) = g4

16
y6 +

3

2
g2

(
c − J − 1

2

)
y2 + (J + 3c)(J + 3c + 1)

1

y2
+ N. (112)

Once again this is typical of a radial sextic oscillator and the QES characteristic of the SHG is
thus proved. The determination of the energies is then possible without any difficulty [2]. For
example, when N = 4, we have

J = 0 → E = 4 (113)

J = 1

2
→ E = 4 ± g

√
2
√

19 (114)

J = 1 → E = 4, 4 ± 4g. (115)

Only the values (115) correspond to known ones, the values (113), (114) coming from other
models. This is a general result in the sense that the energies of SHG are the ones of the
Schrödinger potential (112) with

c = J − N

3
(116)

and

J = N

4
or J = N − 1

4
(117)
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according to even or odd values of N . The SHG potential is thus written

V (y) = g4

16
y6 − g2

4
(2N + 3)y2 + N (118)

and exactly coincides with the potential (42) of [7]. In terms of the operators (4) (with j = J ),
this gives

H = gj+

(
j0 +

1

2
− N

4

)
− 4gj− + N (119)

if N is even and

H = gj+

(
j0 − 1

4
− N

4

)
− 4gj− + N (120)

if N is odd.

6. Conclusions

We have developed a general method based on the polynomial deformations of the Lie algebra
sl(2, R) in order to exhibit the QES characteristics of a Hamiltonian. We have applied
this method to two examples: one more theoretical—the sextic oscillator—and one more
physical—the SGH. In both cases, a finite number of energies as well as eigenfunctions
are determined through the finite-dimensional representations—or, in an equivalent way,
through the realizations—of these polynomial deformations. Some of these energies (and
eigenfunctions) were previously known, but not the others. It seems, through the analysis of
the two examples, that these previously unknown energies do not correspond to the same model
but to another one closely related to the first one. In some cases, the comparison between these
new and old models could be interesting, with respect to experimental data in particular.

The main advantage of the method we have proposed is that it can be systematically applied
to any Hamiltonian written in terms of a raising and a lowering operator. Numerous physical
Hamiltonians are of this type. In particular, we plan to analyse one of them: the so-called
Lipkin–Meshkov–Glick Hamiltonian [8] of specific interest in nuclear physics. Being based
on an (α 	= 0) polynomial deformation, its analysis is more delicate but also richer in the
number of available representations [9].

The main drawback is that it is limited to sl(2, R) and its deformations when we know that
some QES models need more extended algebras. However, the method we have presented here
can also be generalized to these extended algebras as well as superalgebras. In particular, one
can consider more than one variable by going to sl(2, R)⊕ sl(2, R) or sl(3, R) for example (it
happens that there are 21 possibilities [2] when only two-dimensional problems are studied).
We also plan to return to these points in the near future.
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